You're reading the documentation for a development version. For the latest released version, please have a look at v5.0.4.
Axial Flow Column 2D¶
Group /input/model/unit_XXX - UNIT_TYPE - COLUMN_MODEL_2D¶
UNIT_TYPE
Specifies the type of unit operation model
Type: string
Range: \(\texttt{COLUMN_MODEL_2D}\)
Length: 1
NCOMP
Number of chemical components in the chromatographic medium
Type: int
Range: \(\geq 1\)
Length: 1
CROSS_SECTION_AREA
Cross section area of the column. This parameter is optional and will be ignored if COL_RADIUS is provided. Unit: \(\mathrm{m}^{2}\)
Type: double
Range: \(>0\)
Length: 1
COL_LENGTH
Column length / height
Unit: \(\mathrm{m}\)
Type: double
Range: \(> 0\)
Length: 1
COL_RADIUS
Column radius. This parameter is optional if
CROSS_SECTION_AREA
is provided.Unit: \(\mathrm{m}\)
Type: double
Range: \(> 0\)
Length: 1
COL_POROSITY
Column porosity, either constant (length is 1) or for each radial zone (length is \(\texttt{NRAD}\)). In case of a spatially inhomogeneous setting, the \(\texttt{SENS_PARTYPE}\) field is used for indexing the radial zone when specifying parameter sensitivities.
Type: double
Range: \((0,1]\)
Length: \(1 / \texttt{NRAD}\)
PAR_TYPE_VOLFRAC
Volume fractions of the particle types. The volume fractions can be set homogeneous or individually along both axes. For each cell, the volume fractions have to sum to 1. In case of a spatially inhomogeneous setting, the \(\texttt{SENS_SECTION}\) field is used for indexing the axial cell and the \(\texttt{SENS_REACTION}\) field is used for indexing the radial cell when specifying parameter sensitivities. This field is optional in case of only one particle type.
Type: double
Range: \([0,1]\)
Length: see \(\texttt{PAR_TYPE_VOLFRAC_MULTIPLEX}\)
PAR_TYPE_VOLFRAC_MULTIPLEX
Multiplexing mode of \(\texttt{PAR_TYPE_VOLFRAC}\). Determines whether \(\texttt{PAR_TYPE_VOLFRAC}\) is treated as radial- and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of \(\texttt{PAR_TYPE_VOLFRAC}\). Valid modes are:
Radial-independent, axial-independent; length of \(\texttt{PAR_TYPE_VOLFRAC}\) is \(\texttt{NPARTYPE}\)
Radial-dependent, axial-independent; length of \(\texttt{PAR_TYPE_VOLFRAC}\) is \(\texttt{NRAD} \cdot \texttt{NPARTYPE}\); ordering is radial-major
Axial-dependent; length of \(\texttt{PAR_TYPE_VOLFRAC}\) is \(\texttt{NCOL} \cdot \texttt{NPARTYPE}\); ordering is axial-major
Radial-dependent, axial-dependent; length of \(\texttt{PAR_TYPE_VOLFRAC}\) is \(\texttt{NCOL} \cdot \texttt{NRAD} \cdot \texttt{NPARTYPE}\); ordering is axial-radial-major
VELOCITY
Indicates flow direction in each radial zone (forward if value is positive, backward if value is negative), see Section Specification of flow rate / velocity and direction). In case of a spatially inhomogeneous setting, the \(\texttt{SENS_PARTYPE}\) field is used for indexing the radial cell when specifying parameter sensitivities.
Type: double
Range: \(\mathbb{R}\)
Length: see \(\texttt{VELOCITY_MULTIPLEX}\)
VELOCITY_MULTIPLEX
Multiplexing mode of \(\texttt{VELOCITY}\). Determines whether \(\texttt{VELOCITY}\) is treated as radial- and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of \(\texttt{VELOCITY}\). Valid modes are:
Radial-independent, section-independent; length of \(\texttt{VELOCITY}\) is 1
Radial-dependent, section-independent; length of \(\texttt{VELOCITY}\) is \(\texttt{NRAD}\)
Section-dependent; length of \(\texttt{VELOCITY}\) is \(\texttt{NSEC}\)
Radial-dependent, section-dependent; length of \(\texttt{VELOCITY}\) is \(\texttt{NRAD} \cdot \texttt{NSEC}\); ordering is section-major
COL_DISPERSION_AXIAL
Axial dispersion coefficient
Unit: \(\mathrm{m}_{\mathrm{IV}}^{2}\,\mathrm{s}^{-1}\)
Type: double
Range: \(\geq 0\)
Length: see \(\texttt{COL_DISPERSION_AXIAL_MULTIPLEX}\)
COL_DISPERSION_AXIAL_MULTIPLEX
Multiplexing mode of \(\texttt{COL_DISPERSION_AXIAL}\). Determines whether \(\texttt{COL_DISPERSION_AXIAL}\) is treated as component-, radial-, and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of \(\texttt{COL_DISPERSION_AXIAL}\). Valid modes are:
Component-independent, radial-independent, section-independent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is 1
Component-independent, radial-dependent, section-independent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NRAD}\)
Component-dependent, radial-independent, section-independent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NCOMP}\)
Component-dependent, radial-dependent, section-independent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NCOMP} \cdot \texttt{NRAD}\); ordering is radial-major
Component-independent, radial-independent, section-dependent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NSEC}\)
Component-independent, radial-dependent, section-dependent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NRAD} \cdot \texttt{NSEC}\); ordering is section-major
Component-dependent, radial-independent, section-independent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NCOMP} \cdot \texttt{NSEC}\); ordering is section-major
Component-dependent, radial-dependent, section-dependent; length of \(\texttt{COL_DISPERSION_AXIAL}\) is \(\texttt{NCOMP} \cdot \texttt{NRAD} \cdot \texttt{NSEC}\); ordering is section-radial-major
Type: int
Range: \(\{0, \dots, 7 \}\)
Length: 1
COL_DISPERSION_RADIAL
Radial dispersion coefficient. In case of a spatially inhomogeneous setting, the \(\texttt{SENS_PARTYPE}\) field is used for indexing the radial zone when specifying parameter sensitivities.
Unit: \(\mathrm{m}_{\mathrm{IV}}^{2}\,\mathrm{s}^{-1}\)
Type: double
Range: \(\geq 0\)
Length: see \(\texttt{COL_DISPERSION_RADIAL_MULTIPLEX}\)
COL_DISPERSION_RADIAL_MULTIPLEX
Multiplexing mode of \(\texttt{COL_DISPERSION_RADIAL}\). Determines whether \(\texttt{COL_DISPERSION_RADIAL}\) is treated as component-, radial-, and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of \(\texttt{COL_DISPERSION_RADIAL}\). Valid modes are:
Component-independent, radial-independent, section-independent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is 1
Component-independent, radial-dependent, section-independent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NRAD}\)
Component-dependent, radial-independent, section-independent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NCOMP}\)
Component-dependent, radial-dependent, section-independent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NCOMP} \cdot \texttt{NRAD}\); ordering is radial-major
Component-independent, radial-independent, section-dependent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NSEC}\)
Component-independent, radial-dependent, section-dependent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NRAD} \cdot \texttt{NSEC}\); ordering is section-major
Component-dependent, radial-independent, section-independent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NCOMP} \cdot \texttt{NSEC}\); ordering is section-major
Component-dependent, radial-dependent, section-dependent; length of \(\texttt{COL_DISPERSION_RADIAL}\) is \(\texttt{NCOMP} \cdot \texttt{NRAD} \cdot \texttt{NSEC}\); ordering is section-radial-major
Type: int
Range: \(\{0, \dots, 7 \}\)
Length: 1
REACTION_MODEL_BULK
Specifies the type of reaction model of the bulk volume. The model is configured in the subgroup \(\texttt{reaction_bulk}\).
Type: string
Range: See Section Reaction models
Length: 1
INIT_C
Initial concentrations for each component in all radial zones the bulk mobile phase (length \(\texttt{NCOMP}\)), or for each component in each radial zone (length \(\texttt{NCOMP} \cdot \texttt{NRAD}\), ordering radial-major)
Unit: \(\mathrm{mol}\,\mathrm{m}_{\mathrm{IV}}^{-3}\)
Type: double
Range: \(\geq 0\)
Length: \(\texttt{NCOMP} / \texttt{NCOMP} \cdot \texttt{NRAD}\)
INIT_STATE
Full state vector for initialization (optional, \(\texttt{INIT_C}\), \(\texttt{INIT_CP}\), and \(\texttt{INIT_CS}\) will be ignored; if length is \(2\texttt{NDOF}\), then the second half is used for time derivatives)
Unit: \(various\)
Type: double
Range: \(\mathbb{R}\)
Length: \(\texttt{NDOF} / 2\texttt{NDOF}\)
Group /input/model/unit_XXX/particle_type_XXX¶
Each particle type is specified in another subgroup particle_type_XXX, see Particle Model.
Group /input/model/unit_XXX/discretization - UNIT_TYPE - COLUMN_MODEL_2D¶
USE_ANALYTIC_JACOBIAN
Determines whether analytically computed Jacobian matrix (faster) is used (value is 1) instead of Jacobians generated by algorithmic differentiation (slower, value is 0)
Type: int
Range: \(\{0, 1\}\)
Length: 1
Spatial discretization - Numerical Methods¶
CADET offers two spatial discretization methods: Finite Volumes (FV) and Discontinuous Galerkin (DG). Each method has it’s own set of input fields. While both methods approximate the same solution to the same underlying model, they may differ in terms of computational performance. With our currently implemented variants of FV and DG, FV perform better for solutions with steep gradients or discontinuities, while DG can be much faster for rather smooth solutions. For the same number of discrete points, DG will generally be slower but often more accurate.
For further information on the choice of discretization methods and their parameters, see Spatial discretization methods.
SPATIAL_METHOD
Spatial discretization method. Optional, defaults to \(\texttt{FV}\)
Type: string
Range: \(\{\texttt{FV}, \texttt{DG}\}\)
Length: 1
RADIAL_DISC_TYPE
Specifies the radial discretization scheme. Valid values are \(\texttt{EQUIDISTANT}\), \(\texttt{EQUIVOLUME}\), and \(\texttt{USER_DEFINED}\).
Type: string
Length: 1
RADIAL_COMPARTMENTS
Coordinates for the radial compartment boundaries (ignored if \(\texttt{RADIAL_DISC_TYPE} \neq \texttt{USER_DEFINED}\)). The coordinates are absolute and have to include the endpoints 0 and \(\texttt{COLUMN_RADIUS}\). The values are expected in ascending order (i.e., 0 is the first and \(\texttt{COLUMN_RADIUS}\) the last value in the array).
Unit: \(\mathrm{m}\)
Type: double
Range: \([0,\texttt{COLUMN_RADIUS}]\)
Length: \(\texttt{NRAD} + 1\)
Discontinuous Galerkin¶
AX_POLYDEG
DG polynomial degree for axial discretization. Optional, defaults to 4 and \(N^z_d \in \{3, 4, 5\}\) is recommended. The total number of axial discrete points is given by (
AX_POLYDEG
+ 1 ) *AX_NELEM
Type: int
Range: \(\geq 1\)
Length: 1
AX_NELEM
Number of axial column discretization DG cellselements. The total number of axial discrete points is given by (
POLYDEG
+ 1 ) *NELEM
Type: int
Range: \(\geq 1\)
Length: 1
RAD_POLYDEG
DG polynomial degree for radial discretization. Optional, defaults to 4 and \(N^r_d \in \{3, 4, 5\}\) is recommended, and should generally be the same as the axial degree. The total number of radial discrete points is given by (
RAD_POLYDEG
+ 1 ) *RAD_NELEM
Type: int
Range: \(\geq 1\)
Length: 1
RAD_NELEM
Number of radial column discretization DG cellselements. The total number of axial discrete points is given by (
POLYDEG
+ 1 ) *NELEM
Type: int
Range: \(\geq 1\)
Length: 1
LINEAR_SOLVER
Specifies the linear solver variant used to factorize the semidiscretized system. Optional, defaults to
SparseLU
. For more information on these solvers, we refer to the Eigen documentation
Type: int
Range: \(\{\texttt{SparseLU}, \texttt{SparseQR}, ..., \texttt{BiCGSTAB}\}\)
Length: 1
For further information on discretization parameters, see also Nonlinear solver for consistent initialization.
Finite Volumes¶
NCOL
Number of axial column discretization cells
Type: int
Range: \(\geq 1\)
Length: 1
NRAD
Number of radial column discretization cells
Type: int
Range: \(\geq 1\)
Length: 1
NPAR
Number of particle (radial) discretization cells for each particle type
Type: int
Range: \(\geq 1\)
Length: \(1 / \texttt{NPARTYPE}\)
LINEAR_SOLVER_BULK
Linear solver used for the sparse column bulk block. This field is optional, the best available method is selected (i.e., sparse direct solver if possible). Valid values are:
\(\texttt{DENSE}\) Converts the sparse matrix into a banded matrix and uses regular LAPACK. Slow and memory intensive, but always available.
\(\texttt{UMFPACK}\) Uses the UMFPACK sparse direct solver (LU decomposition) from SuiteSparse. Fast, but has to be enabled when compiling and requires UMFPACK library.
\(\texttt{SUPERLU}\) Uses the SuperLU sparse direct solver (LU decomposition). Fast, but has to be enabled when compiling and requires SuperLU library.
Type: string
Range: \(\{\texttt{DENSE},\texttt{UMFPACK},\texttt{SUPERLU}\}\)
Length: 1
RECONSTRUCTION
Type of reconstruction method for fluxes
Type: string
Range: \(\texttt{WENO}\)
Length: 1
GS_TYPE
Type of Gram-Schmidt orthogonalization, see IDAS guide Section~4.5.7.3, p.~41f. A value of 0 enables classical Gram-Schmidt, a value of 1 uses modified Gram-Schmidt.
Type: int
Range: \(\{0, 1\}\)
Length: 1
MAX_KRYLOV
Defines the size of the Krylov subspace in the iterative linear GMRES solver (0: \(\texttt{MAX_KRYLOV} = \texttt{NCOL} \cdot \texttt{NRAD} \cdot \texttt{NCOMP} \cdot \texttt{NPARTYPE}\))
Type: int
Range: \(\{0, \dots, \texttt{NCOL} \cdot \texttt{NRAD} \cdot \texttt{NCOMP} \cdot \texttt{NPARTYPE} \}\)
Length: 1
MAX_RESTARTS
Maximum number of restarts in the GMRES algorithm. If lack of memory is not an issue, better use a larger Krylov space than restarts.
Type: int
Range: \(\geq 0\)
Length: 1
SCHUR_SAFETY
Schur safety factor; Influences the tradeoff between linear iterations and nonlinear error control; see IDAS guide Section~2.1 and 5.
Type: double
Range: \(\geq 0\)
Length: 1
For further discretization parameters, see also Flux reconstruction methods, and Nonlinear solver for consistent initialization.