You're reading the documentation for a development version. For the latest released version, please have a look at v5.0.3.

Extended Mobile Phase Modulator LangmuirΒΆ

This model is an extension of the mobile phase modulator Langmuir model (see Section Multi Component Langmuir), which allows linear binding of some selected components. A modifier component \(c_{p,\mathrm{mod}}\) is selected and the remaining components are divided into the index sets \(\mathcal{I}_{\mathrm{lin}}\) and \(\mathcal{I}_{\mathrm{lang}}\).

\[\begin{split}\begin{aligned} \frac{\mathrm{d} q_i}{\mathrm{d} t} &= k_{a,i} e^{\gamma_i c_{p,\mathrm{mod}}} c_{p,i}\: q_{\text{max},i} \left( 1 - \sum_{j=1}^{N_{\text{comp}} - 1} \frac{q_j}{q_{\text{max},j}} \right) - k_{d,i} \: c_{p,\mathrm{mod}}^{\beta_i} \: q_i && i \in \mathcal{I}_{\mathrm{lang}}, \\ \frac{\mathrm{d} q_i}{\mathrm{d} t} &= k_{a,i} c_{p,i} - k_{d,i} \: q_i && i \in \mathcal{I}_{\mathrm{lin}}. \end{aligned}\end{split}\]

The modifier component is considered to be inert, therefore either

\[\frac{\mathrm{d} q_{\mathrm{mod}}}{\mathrm{d} t} = 0\]

is used if the modifier component has a bound state, or it can be used without a bound state.

The model can also be used without a modifier component. In this case, the equations are given by

\[\begin{split}\begin{aligned} \frac{\mathrm{d} q_i}{\mathrm{d} t} &= k_{a,i} c_{p,i}\: q_{\text{max},i} \left( 1 - \sum_{j=1}^{N_{\text{comp}} - 1} \frac{q_j}{q_{\text{max},j}} \right) - k_{d,i} \: q_i && i \in \mathcal{I}_{\mathrm{lang}}, \\ \frac{\mathrm{d} q_i}{\mathrm{d} t} &= k_{a,i} c_{p,i} - k_{d,i} \: q_i && i \in \mathcal{I}_{\mathrm{lin}}. \end{aligned}\end{split}\]

For more information on model parameters required to define in CADET file format, see Extended Mobile Phase Modulator Langmuir.