You're reading an old version of this documentation. For the latest released version, please have a look at v5.0.3.
General CADET-Core:
Leweke, S.; von Lieres, E.:
Chromatography Analysis and Design Toolkit (CADET) <https://doi.org/10.1016/j.compchemeng.2018.02.025>
_, Computers and Chemical Engineering 113 (2018), 274?294.von Lieres, E.; Andersson, J.:
A fast and accurate solver for the general rate model of column liquid chromatography <https://doi.org/10.1016/j.compchemeng.2010.03.008>
_, Computers and Chemical Engineering 34,8 (2010), 1180?1191.
CADET-Core numerics:
Breuer, J. M.; Leweke, S.; Schm?lder, J.; Gassner, G.; von Lieres, E.:
Spatial discontinuous Galerkin spectral element method for a family of chromatography models in CADET <https://doi.org/10.1016/j.compchemeng.2023.108340>
_, Computers and Chemical Engineering 177 (2023), 108340.Leweke, S.; von Lieres, E.:
Fast arbitrary order moments and arbitrary precision solution of the general rate model of column liquid chromatography with linear isotherm <http://dx.doi.org/10.1016/j.compchemeng.2015.09.009>
_, Computers and Chemical Engineering 84 (2016), 350?362.P?ttmann, A.; Schnittert, S.; Naumann, U.; von Lieres, E.:
Fast and accurate parameter sensitivities for the general rate model of column liquid chromatography <http://dx.doi.org/10.1016/j.compchemeng.2013.04.021>
_, Computers and Chemical Engineering 56 (2013), 46?57.
Selected applications and use-cases of CADET-Core:
Heymann, W.; Glaser, J.; Schlegel, F.; Johnson, W.; Rolandi, P.; von Lieres, E.:
Advanced score system and automated search strategies for parameter estimation in mechanistic chromatography modeling <https://doi.org/10.1016/j.chroma.2021.462693>
_, Journal of Chromatography A 1661 (2022): 462693.He, Q.-L.; Leweke, S.; von Lieres, E.:
Efficient numerical simulation of simulated moving bed chromatography with a single-column solver <http://doi.org/10.1016/j.compchemeng.2017.12.022>
_, Computers and Chemical Engineering 111 (2018), 183?198.Freier, L.; von Lieres, E.:
Robust multi-objective global optimization of stochastic processes with a case study in gradient elution chromatography <http://doi.org/10.1002/biot.201700257>
_, Biotechnology Journal 13,1 (2018), 1700257.Freier, L.; von Lieres, E.: [Multi-objective global optimization (MOGO):
Algorithm and case study in gradient elution chromatography <http://dx.doi.org/10.1002/biot.201600613>
_, Biotechnology Journal 12,7 (2017), 1600613.Diedrich, J.; Heymann, W.; Leweke, S.; Kunert, C.; Johnson, W.; Hunt, S.; Todd, B.; von Lieres, E.:
Multi-state steric mass-action model and case study on complex high loading behavior of mAb on ion exchange tentacle resin <https://doi.org/10.1016/j.chroma.2017.09.039>
_, Journal of Chromatography A 1525 (2017), 60?70.P?ttmann, A.; Schnittert, S.; Leweke, S.; von Lieres, E.:
Utilizing algorithmic differentiation to efficiently compute chromatograms and parameter sensitivities <https://doi.org/10.1016/j.ces.2015.08.050>
_, Chemical Engineering Science, 139 (2016), 152?162.