.. _multi_component_sips_model: Multi Component Sips ~~~~~~~~~~~~~~~~~~~~~~~~ The Sips binding model is a combination of the :ref:`Freundlich` and the :ref:`Langmuir adsorption model`. .. math:: \begin{aligned} \frac{\mathrm{d} q_i}{\mathrm{d} t} = k_{a,i}\: \left( \frac{c_{p,i}}{ c_{\text{ref}} }\right)^{1 / n_i}\: q_{\text{max},i} \left( 1 - \sum_{j=0}^{N_{\text{comp}} - 1} \frac{q_j}{q_{\text{max},j}} \right) - k_{d,i} \left( \frac{q_i}{q_{\text{ref}}} \right) && i = 0, \dots, N_{\text{comp}} - 1. \end{aligned} Here, :math:`c_{\text{ref}}` is a :ref:`reference concentration `, :math:`n_i` is the Freundlich exponent, :math:`k_{a,i}, k_{d,i}` are the adsorption and desorption rates, and :math:`q_{\text{max},j}` is the adsorption capacity. As for the :ref:`Freundlich` isotherm, the first order Jacobian :math:`\left(\frac{dq^*}{dc_p}\right)` tends to infinity as :math:`c_{p} \rightarrow 0` for :math:`n>1`. Additionally, the isotherm is undefined for :math:`c_{p} < 0` if :math:`\frac{1}{n_i}` can be expressed as :math:`\frac{p}{q}` with :math:`p,q \in \mathbb{N}` where :math:`q` is an even number. Negative concentrations can arise during simulations due to numerical fluctuations. To address these issues an approximation of the isotherm is considered below a threshold concentration :math:`c_p < \varepsilon`. This approximation matches the isotherm in such a way that :math:`q=0` at :math:`c_p=0` and also matches the value and the first derivative of the istotherm at :math:`c_p = \varepsilon`, where :math:`\varepsilon` is a very small number, for example :math:`1e-10`. The form of approximation and its derivative is given below for :math:`c_p < \varepsilon`: .. math:: \begin{aligned} c_{p,i,lin} &= \left(\frac{\varepsilon}{c_{p,\text{ref}}}\right)^{\frac{1}{n_i} - 2} \frac{c_{p,i}}{{c_{p,\text{ref}}}^2} \left( \left(2-\frac{1}{n_i}\right)\varepsilon + c_{p,i}\left(\frac{1}{n}-1\right) \right) \\ \frac{\mathrm{d}q_i}{\mathrm{d}t} &= k_{a,i} c_{p,i,lin} q_{\text{max},i} \left( 1 - \sum_j \frac{q_j}{q_{\text{max},j}} \right) - k_{d,i} \frac{q_i}{q_{i,\text{ref}}} \end{aligned} For more information on model parameters required to define in CADET file format, see :ref:`multi_component_sips_config`. For more information on the model and its origin, please refer to :cite:`sips1948`.