.. _general_rate_model_config: General Rate Model ================== Group /input/model/unit_XXX - UNIT_TYPE - GENERAL_RATE_MODEL ------------------------------------------------------------ For information on model equations, refer to :ref:`general_rate_model_model`. ``UNIT_TYPE`` Specifies the type of unit operation model ================ ============================================== ============= **Type:** string **Range:** :math:`\texttt{GENERAL_RATE_MODEL}` **Length:** 1 ================ ============================================== ============= ``NCOMP`` Number of chemical components in the chromatographic medium ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``ADSORPTION_MODEL`` Specifies the type of binding model of each particle type (or of all particle types if length is :math:`1`) ================ ============================== ========================================= **Type:** string **Range:** :ref:`FFAdsorption` **Length:** :math:`1 / \texttt{NPARTYPE}` ================ ============================== ========================================= ``ADSORPTION_MODEL_MULTIPLEX`` Multiplexing mode of :math:`\texttt{ADSORPTION_MODEL}`. If set to :math:`0`, each particle type has a different binding model and the length of :math:`\texttt{ADSORPTION_MODEL}` is :math:`\texttt{NPARTYPE}`. If set to :math:`1`, all particle types share the same binding model and the length of :math:`\texttt{ADSORPTION_MODEL}` is :math:`1`. This field is optional and inferred from the length of :math:`\texttt{ADSORPTION_MODEL}` if left out. ============= =========================== ============= **Type:** int **Range:** :math:`\{0, 1\}` **Length:** 1 ============= =========================== ============= ``NBOUND`` Number of bound states for each component in each particle type in type-major ordering ============= ========================= =================================================================================== **Type:** int **Range:** :math:`\geq 0` **Length:** :math:`\texttt{NCOMP}` / :math:`\texttt{NPARTYPE} \cdot \texttt{NCOMP}` ============= ========================= =================================================================================== ``REACTION_MODEL_BULK`` Specifies the type of reaction model of the bulk volume. The model is configured in the subgroup :math:`\texttt{reaction_bulk}`. ================ ======================================== ============= **Type:** string **Range:** See Section :ref:`FFReaction` **Length:** 1 ================ ======================================== ============= ``REACTION_MODEL_PARTICLES`` Specifies the type of reaction model of each particle type (or of all particle types if length is :math:`1`). The model is configured in the subgroup :math:`\texttt{reaction_particle}`, or :math:`\texttt{reaction_particle_XXX}` in case of disabled multiplexing. ================ ======================================== ========================================= **Type:** string **Range:** See Section :ref:`FFReaction` **Length:** :math:`1 / \texttt{NPARTYPE}` ================ ======================================== ========================================= ``REACTION_MODEL_PARTICLES_MULTIPLEX`` Multiplexing mode of :math:`\texttt{REACTION_MODEL_PARTICLES}`. If set to :math:`0`, each particle type has a different reaction model and the length of :math:`\texttt{REACTION_MODEL_PARTICLES}` is :math:`\texttt{NPARTYPE}`. If set to :math:`1`, all particle types share the same reaction model and the length of :math:`\texttt{REACTION_MODEL_PARTICLES}` is :math:`1`. This field is optional and inferred from the length of :math:`\texttt{REACTION_MODEL_PARTICLES}` if left out. ============= =========================== ============= **Type:** int **Range:** :math:`\{0, 1\}` **Length:** 1 ============= =========================== ============= ``INIT_C`` Initial concentrations for each component in the bulk mobile phase **Unit:** :math:`\mathrm{mol}\,\mathrm{m}_{\mathrm{IV}}^{-3}` ================ ========================= ================================== **Type:** double **Range:** :math:`\geq 0` **Length:** :math:`\texttt{NCOMP}` ================ ========================= ================================== ``INIT_CP`` Initial concentrations for each component in the bead liquid phase (optional, :math:`\texttt{INIT_C}` is used if left out). The length of this field can be :math:`\texttt{NCOMP}` (same values for each particle type) or :math:`\texttt{NPARTYPE} \cdot \texttt{NCOMP}` Values for each particle type can only be given when :math:`\texttt{ADSORPTION_MODEL_MULTIPLEX}` is :math:`0`. The ordering is type-major. **Unit:** :math:`\mathrm{mol}\,\mathrm{m}_{\mathrm{MP}}^{-3}` ================ ========================= =========================================================================== **Type:** double **Range:** :math:`\geq 0` **Length:** :math:`\texttt{NCOMP} / \texttt{NPARTYPE} \cdot \texttt{NCOMP}` ================ ========================= =========================================================================== ``INIT_Q`` Initial concentrations for each bound state of each component in the bead solid phase. If :math:`\texttt{ADSORPTION_MODEL_MULTIPLEX}` is :math:`0`, values for each particle type are required in type-component-major ordering (length is :math:`\texttt{NTOTALBND}`). If :math:`\texttt{ADSORPTION_MODEL_MULTIPLEX}` is :math:`1`, values for one particle type are required in component-major ordering (length is :math:`\sum_{i = 0}^{\texttt{NCOMP} - 1} \texttt{NBND}_i`). **Unit:** :math:`\mathrm{mol}\,\mathrm{m}_{\mathrm{SP}}^{-3}` ================ ========================= **Type:** double **Range:** :math:`\geq 0` ================ ========================= ``INIT_STATE`` Full state vector for initialization (optional, :math:`\texttt{INIT_C}`, :math:`\texttt{INIT_CP}`, and :math:`\texttt{INIT_Q}` will be ignored; if length is :math:`2\texttt{NDOF}`, then the second half is used for time derivatives) **Unit:** :math:`various` ================ ============================= ================================================== **Type:** double **Range:** :math:`\mathbb{R}` **Length:** :math:`\texttt{NDOF} / 2\texttt{NDOF}` ================ ============================= ================================================== ``COL_DISPERSION`` Axial dispersion coefficient **Unit:** :math:`\mathrm{m}_{\mathrm{IV}}^{2}\,\mathrm{s}^{-1}` ================ ========================= ========================================================= **Type:** double **Range:** :math:`\geq 0` **Length:** see :math:`\texttt{COL_DISPERSION_MULTIPLEX}` ================ ========================= ========================================================= ``COL_DISPERSION_MULTIPLEX`` Multiplexing mode of :math:`\texttt{COL_DISPERSION}`. Determines whether :math:`\texttt{COL_DISPERSION}` is treated as component- and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of :math:`\texttt{COL_DISPERSION}`. Valid modes are: 0. Component-independent, section-independent; length of :math:`\texttt{COL_DISPERSION}` is :math:`1` 1. Component-dependent, section-independent; length of :math:`\texttt{COL_DISPERSION}` is :math:`\texttt{NCOMP}` 2. Component-independent, section-dependent; length of :math:`\texttt{COL_DISPERSION}` is :math:`\texttt{NSEC}` 3. Component-dependent, section-dependent; length of :math:`\texttt{COL_DISPERSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NSEC}`; ordering is section-major ============= =================================== ============= **Type:** int **Range:** :math:`\{0, \dots, 3 \}` **Length:** 1 ============= =================================== ============= ``COL_LENGTH`` Column length **Unit:** :math:`\mathrm{m}` ================ ====================== ============= **Type:** double **Range:** :math:`> 0` **Length:** 1 ================ ====================== ============= ``COL_POROSITY`` Column porosity ================ ======================== ============= **Type:** double **Range:** :math:`(0,1]` **Length:** 1 ================ ======================== ============= ``FILM_DIFFUSION`` Film diffusion coefficients for each component of each particle type **Unit:** :math:`\mathrm{m}\,\mathrm{s}^{-1}` ================ ========================= ========================================================= **Type:** double **Range:** :math:`\geq 0` **Length:** see :math:`\texttt{FILM_DIFFUSION_MULTIPLEX}` ================ ========================= ========================================================= ``FILM_DIFFUSION_MULTIPLEX`` Multiplexing mode of :math:`\texttt{FILM_DIFFUSION}`. Determines whether :math:`\texttt{FILM_DIFFUSION}` is treated as component-, type-, and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of :math:`\texttt{FILM_DIFFUSION}`. Valid modes are: 0. Component-dependent, type-independent, section-independent; length of :math:`\texttt{FILM_DIFFUSION}` is :math:`\texttt{NCOMP}` 1. Component-dependent, type-independent, section-dependent; length of :math:`\texttt{FILM_DIFFUSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NSEC}`; ordering is section-major 2. Component-dependent, type-dependent, section-independent; length of :math:`\texttt{FILM_DIFFUSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NPARTYPE}`; ordering is type-major 3. Component-dependent, type-dependent, section-dependent; length of :math:`\texttt{FILM_DIFFUSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NPARTYPE} \cdot \texttt{NSEC}`; ordering is section-type-major ============= =================================== ============= **Type:** int **Range:** :math:`\{0, \dots, 3 \}` **Length:** 1 ============= =================================== ============= ``PAR_POROSITY`` Particle porosity of all particle types or for each particle type ================ ======================== ========================================= **Type:** double **Range:** :math:`(0,1]` **Length:** :math:`1 / \texttt{NPARTYPE}` ================ ======================== ========================================= ``PAR_RADIUS`` Particle radius of all particle types or for each particle type **Unit:** :math:`\mathrm{m}` ================ ===================== ========================================= **Type:** double **Range:** :math:`>0` **Length:** :math:`1 / \texttt{NPARTYPE}` ================ ===================== ========================================= ``PAR_CORERADIUS`` Particle core radius of all particle types or for each particle type (optional, defaults to :math:`\mathrm{m}`) **Unit:** :math:`\mathrm{m}` ================ =========================================== ========================================= **Type:** double **Range:** :math:`[0, \texttt{PAR_RADIUS})` **Length:** :math:`1 / \texttt{NPARTYPE}` ================ =========================================== ========================================= ``PORE_ACCESSIBILITY`` Pore accessibility factor of each component in each particle type (optional, defaults to :math:`1`). Note: Should not be used in combination with any binding model! ================ ========================= ============================================================= **Type:** double **Range:** :math:`(0, 1]` **Length:** see :math:`\texttt{PORE_ACCESSIBILITY_MULTIPLEX}` ================ ========================= ============================================================= ``PORE_ACCESSIBILITY_MULTIPLEX`` Multiplexing mode of :math:`\texttt{PORE_ACCESSIBILITY}`. Determines whether :math:`\texttt{PORE_ACCESSIBILITY}` is treated as component-, type-, and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of :math:`\texttt{PORE_ACCESSIBILITY}`. Valid modes are: 0. Component-dependent, type-independent, section-independent; length of :math:`\texttt{PORE_ACCESSIBILITY}` is :math:`\texttt{NCOMP}` 1. Component-dependent, type-independent, section-dependent; length of :math:`\texttt{PORE_ACCESSIBILITY}` is :math:`\texttt{NCOMP} \cdot \texttt{NSEC}`; ordering is section-major 2. Component-dependent, type-dependent, section-independent; length of :math:`\texttt{PORE_ACCESSIBILITY}` is :math:`\texttt{NCOMP} \cdot \texttt{NPARTYPE}`; ordering is type-major 3. Component-dependent, type-dependent, section-dependent; length of :math:`\texttt{PORE_ACCESSIBILITY}` is :math:`\texttt{NCOMP} \cdot \texttt{NPARTYPE} \cdot \texttt{NSEC}`; ordering is section-type-major ============= =================================== ============= **Type:** int **Range:** :math:`\{0, \dots, 3 \}` **Length:** 1 ============= =================================== ============= ``PAR_DIFFUSION`` Effective particle diffusion coefficients of each component in each particle type **Unit:** :math:`\mathrm{m}_{\mathrm{MP}}^{2}\,\mathrm{s}^{-1}` ================ ====================== ======================================================== **Type:** double **Range:** :math:`> 0` **Length:** see :math:`\texttt{PAR_DIFFUSION_MULTIPLEX}` ================ ====================== ======================================================== ``PAR_DIFFUSION_MULTIPLEX`` Multiplexing mode of :math:`\texttt{PAR_DIFFUSION}`. Determines whether :math:`\texttt{PAR_DIFFUSION}` is treated as component-, type-, and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of :math:`\texttt{PAR_DIFFUSION}`. Valid modes are: 0. Component-dependent, type-independent, section-independent; length of :math:`\texttt{PAR_DIFFUSION}` is :math:`\texttt{NCOMP}` 1. Component-dependent, type-independent, section-dependent; length of :math:`\texttt{PAR_DIFFUSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NSEC}`; ordering is section-major 2. Component-dependent, type-dependent, section-independent; length of :math:`\texttt{PAR_DIFFUSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NPARTYPE}`; ordering is type-major 3. Component-dependent, type-dependent, section-dependent; length of :math:`\texttt{PAR_DIFFUSION}` is :math:`\texttt{NCOMP} \cdot \texttt{NPARTYPE} \cdot \texttt{NSEC}`; ordering is section-type-major ============= =================================== ============= **Type:** int **Range:** :math:`\{0, \dots, 3 \}` **Length:** 1 ============= =================================== ============= ``PAR_SURFDIFFUSION`` Particle surface diffusion coefficients of each bound state of each component in each particle type (optional, defaults to all 0 :math:`\mathrm{m}_{\mathrm{SP}}^{2}\,\mathrm{s}^{-1}`) **Unit:** :math:`\mathrm{m}_{\mathrm{SP}}^{2}\,\mathrm{s}^{-1}` ================ ========================= ============================================================ **Type:** double **Range:** :math:`\geq 0` **Length:** see :math:`\texttt{PAR_SURFDIFFUSION_MULTIPLEX}` ================ ========================= ============================================================ ``PAR_SURFDIFFUSION_MULTIPLEX`` Multiplexing mode of :math:`\texttt{PAR_SURFDIFFUSION}`. Determines whether :math:`\texttt{PAR_SURFDIFFUSION}` is treated as component-, type-, and/or section-independent. This field is optional. When left out, multiplexing behavior is inferred from the length of :math:`\texttt{PAR_SURFDIFFUSION}`. Valid modes are: 0. Component-dependent, type-independent, section-independent; length of :math:`\texttt{PAR_SURFDIFFUSION}` is :math:`\texttt{NBND}`; ordering is component-major 1. Component-dependent, type-independent, section-dependent; length of :math:`\texttt{PAR_SURFDIFFUSION}` is :math:`\texttt{NBND} \cdot \texttt{NSEC}`; ordering is section-component-major 2. Component-dependent, type-dependent, section-independent; length of :math:`\texttt{PAR_SURFDIFFUSION}` is :math:`\texttt{NTOTALBND}`; ordering is type-component-major 3. Component-dependent, type-dependent, section-dependent; length of :math:`\texttt{PAR_SURFDIFFUSION}` is :math:`\texttt{NTOTALBND} \cdot \texttt{NSEC}`; ordering is section-type-component-major ``PAR_SURFDIFFUSION_MULTIPLEX`` ============= ==================================== ============= **Type:** int **Range:** :math:`\{ 0, \dots, 3 \}` **Length:** 1 ============= ==================================== ============= ``PAR_SURFDIFFUSION_DEP`` Parameter dependence of :math:`\texttt{PAR_SURFDIFFUSION}`, please refer to :ref:`parameter_dependencies`, section parameter-state dependencies, for more information. ``VELOCITY`` Interstitial velocity of the mobile phase (optional if :math:`\texttt{CROSS_SECTION_AREA}` is present, see Section :ref:`MUOPGRMflow`) **Unit:** :math:`\mathrm{m}\,\mathrm{s}^{-1}` ================ ============================= ======================================= **Type:** double **Range:** :math:`\mathbb{R}` **Length:** :math:`1 / \texttt{NSEC}` ================ ============================= ======================================= ``CROSS_SECTION_AREA`` Cross section area of the column (optional if :math:`\texttt{VELOCITY}` is present, see Section :ref:`MUOPGRMflow`) **Unit:** :math:`\mathrm{m}^{2}` ================ ===================== ============= **Type:** double **Range:** :math:`>0` **Length:** 1 ================ ===================== ============= ``NPARTYPE`` Number of particle types. Optional, inferred from the length of :math:`\texttt{NPAR}` or :math:`\texttt{NBOUND}` if left out. ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``PAR_GEOM`` Specifies the particle geometry for all or each particle type. Valid values are :math:`\texttt{SPHERE}`, :math:`\texttt{CYLINDER}`, :math:`\texttt{SLAB}`. Optional, defaults to :math:`\texttt{SPHERE}`. ================ ================================================= **Type:** string **Length:** :math:`1` / :math:`\texttt{NPARTYPE}` ================ ================================================= ``PAR_TYPE_VOLFRAC`` Volume fractions of the particle types. The volume fractions can be set for all axial cells together or for each individual axial cell. For each cell, the volume fractions have to sum to :math:`1`. In case of a spatially inhomogeneous setting, the data is expected in cell-major ordering and the :math:`\texttt{SENS_SECTION}` field is used for indexing the axial cell when specifying parameter sensitivities. This field is optional in case of only one particle type. ================ ======================== ============================================================================= **Type:** double **Range:** :math:`[0,1]` **Length:** :math:`\texttt{NPARTYPE} / \texttt{NCOL} \cdot \texttt{NPARTYPE}` ================ ======================== ============================================================================= Group /input/model/unit_XXX/discretization - UNIT_TYPE - GENERAL_RATE_MODEL ---------------------------------------------------------------------------------------- ``USE_ANALYTIC_JACOBIAN`` Determines whether analytically computed Jacobian matrix (faster) is used (value is 1) instead of Jacobians generated by algorithmic differentiation (slower, value is 0) ============= =========================== ============= **Type:** int **Range:** :math:`\{0, 1\}` **Length:** 1 ============= =========================== ============= ``PAR_DISC_TYPE`` Specifies the discretization scheme inside the particles for all or each particle type. Valid values are :math:`\texttt{EQUIDISTANT_PAR}`, :math:`\texttt{EQUIVOLUME_PAR}`, and :math:`\texttt{USER_DEFINED_PAR}`. ================ ================================================= **Type:** string **Length:** :math:`1` / :math:`\texttt{NPARTYPE}` ================ ================================================= ``PAR_DISC_VECTOR`` Node coordinates for the cell boundaries (ignored if :math:`\texttt{PAR_DISC_TYPE} \neq \texttt{USER_DEFINED_PAR}`). The coordinates are relative and have to include the endpoints :math:`0` and :math:`1`. They are later linearly mapped to the true radial range :math:`[r_{c,j}, r_{p,j}]`. The coordinates for each particle type are appended to one long vector in type-major ordering. ================ ======================== ================================================ **Type:** double **Range:** :math:`[0,1]` **Length:** :math:`\sum_i (\texttt{NPAR}_i + 1)` ================ ======================== ================================================ Spatial discretization - Numerical Methods ------------------------------------------ CADET offers two spatial discretization methods: Finite Volumes (FV) and Discontinuous Galerkin (DG). Each method has it's own set of input fields. While both methods approximate the same solution to the same underlying model, they may differ in terms of computational performance. With our currently implemented variants of FV and DG, FV perform better for solutions with steep gradients or discontinuities, while DG can be much faster for rather smooth solutions. For the same number of discrete points, DG will generally be slower but often more accurate. For further information on the choice of discretization methods and their parameters, see :ref:`spatial_discretization_methods`. ``SPATIAL_METHOD`` Spatial discretization method. Optional, defaults to :math:`\texttt{FV}` ================ =============================================== ============= **Type:** string **Range:** :math:`\{\texttt{FV}, \texttt{DG}\}` **Length:** 1 ================ =============================================== ============= Finite Volumes (Default) ------------------------ ``NCOL`` Number of axial column discretization points ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``NPAR`` Number of particle (radial) discretization points for each particle type ============= ========================= ================================================= **Type:** int **Range:** :math:`\geq 1` **Length:** :math:`1` / :math:`\texttt{NPARTYPE}` ============= ========================= ================================================= ``PAR_BOUNDARY_ORDER`` Order of accuracy of outer particle boundary condition. Optional, defaults to :math:`2`. ============= ============================ ============= **Type:** int **Range:** :math:`\{ 1,2 \}` **Length:** 1 ============= ============================ ============= ``RECONSTRUCTION`` Type of reconstruction method for fluxes ================ ================================ ============= **Type:** string **Range:** :math:`\texttt{WENO}` **Length:** 1 ================ ================================ ============= ``GS_TYPE`` Type of Gram-Schmidt orthogonalization, see IDAS guide Section 4.5.7.3, p. 41f. A value of :math:`0` enables classical Gram-Schmidt, a value of 1 uses modified Gram-Schmidt. ============= =========================== ============= **Type:** int **Range:** :math:`\{0, 1\}` **Length:** 1 ============= =========================== ============= ``MAX_KRYLOV`` Defines the size of the Krylov subspace in the iterative linear GMRES solver (0: :math:`\texttt{MAX_KRYLOV} = \texttt{NCOL} \cdot \texttt{NCOMP} \cdot \texttt{NPARTYPE}`) ============= ============================================================================================ ============= **Type:** int **Range:** :math:`\{0, \dots, \texttt{NCOL} \cdot \texttt{NCOMP} \cdot \texttt{NPARTYPE} \}` **Length:** 1 ============= ============================================================================================ ============= ``MAX_RESTARTS`` Maximum number of restarts in the GMRES algorithm. If lack of memory is not an issue, better use a larger Krylov space than restarts. ============= ========================= ============= **Type:** int **Range:** :math:`\geq 0` **Length:** 1 ============= ========================= ============= ``SCHUR_SAFETY`` Schur safety factor; Influences the tradeoff between linear iterations and nonlinear error control; see IDAS guide Section~2.1 and 5. ================ ========================= ============= **Type:** double **Range:** :math:`\geq 0` **Length:** 1 ================ ========================= ============= ``FIX_ZERO_SURFACE_DIFFUSION`` Determines whether the surface diffusion parameters :math:`\texttt{PAR_SURFDIFFUSION}` are fixed if the parameters are zero. If the parameters are fixed to zero (:math:`\texttt{FIX_ZERO_SURFACE_DIFFUSION} = 1`, :math:`\texttt{PAR_SURFDIFFUSION} = 0`), the parameters must not become non-zero during this or subsequent simulation runs. The internal data structures are optimized for a more efficient simulation. This field is optional and defaults to :math:`0` (optimization disabled in favor of flexibility). ============= =========================== ============= **Type:** int **Range:** :math:`\{0, 1\}` **Length:** 1 ============= =========================== ============= For further discretization parameters, see also :ref:`flux_reconstruction_methods` (FV specific)), and :ref:`non_consistency_solver_parameters`. Discontinuous Galerkin ---------------------- ``POLYDEG`` DG polynomial degree. Optional, defaults to 4 and :math:`N_d \in \{3, 4, 5\}` is recommended. The total number of axial discrete points is given by (``POLYDEG`` + 1 ) * ``NELEM`` ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``NELEM`` Number of axial column discretization DG cells\elements. The total number of axial discrete points is given by (``POLYDEG`` + 1 ) * ``NELEM`` ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``NCOL`` Number of axial discrete points. Optional and ignored if ``NELEM`` is defined. Otherwise, used to calculate ``NELEM`` = :math:`\lfloor` ``NCOL`` / (``POLYDEG`` + 1 ) :math:`\rfloor` ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``EXACT_INTEGRATION`` Specifies the DG integration variant. Optional, defaults to 0 ============= =========================== ============= **Type:** int **Range:** :math:`\{0, 1\}` **Length:** 1 ============= =========================== ============= ``PAR_POLYDEG`` DG particle (radial) polynomial degree. Optional, defaults to 3. The total number of particle (radial) discrete points is given by (``PARPOLYDEG`` + 1 ) * ``PAR_NELEM``. ============= ========================= ============= **Type:** int **Range:** :math:`\geq 1` **Length:** 1 ============= ========================= ============= ``PAR_NELEM`` Number of particle (radial) discretization DG elements for each particle type. For the particle discretization, it is usually most performant to fix ``PAR_NELEM`` = 1 and to increase the polynomial degree for more accuracy. ============= ========================= ================================================= **Type:** int **Range:** :math:`\geq 1` **Length:** :math:`1` / :math:`\texttt{NPARTYPE}` ============= ========================= ================================================= When using the DG method for the GRM, we recommend specifying ``USE_MODIFIED_NEWTON = 1`` in :ref:`FFSolverTime`, i.e. to use the modified Newton method to solve the linear system within the time integrator. For further discretization parameters, see also :ref:`non_consistency_solver_parameters`.